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Abstract
In this article we review recent developments in the one-dimensional Bethe
ansatz solvable multi-chain quantum models. The algebraic version of the
Bethe ansatz (the quantum inverse scattering method) permits us to construct
new families of integrable Hamiltonians using simple generalizations of the
well known constructions of the single-chain model. First we consider the
easiest example (‘basic’ model) of this class of models: the antiferromagnetic
two-chain spin- 1

2 model with the nearest-neighbour and next-nearest-neighbour
spin-frustrating interactions (zigzag chain). We show how the algebra of
the quantum inverse scattering method works for this model, and what
are the important features of the Hamiltonian (which reveal the topological
properties of two dimensions together with the one-dimensional properties).
We consider the solution of the Bethe ansatz for the ground state (in particular,
commensurate–incommensurate quantum phase transitions present due to
competing spin-frustrating interactions are discussed) and construct the thermal
Bethe ansatz (in the form of the ‘quantum transfer matrix’) for this model. Then
possible generalizations of the basic model are considered: an inclusion of a
magnetic anisotropy, higher-spin representations (including the important case
of a quantum ferrimagnet), the multi-chain case, internal degrees of freedom
of particles at each site, etc. We observe the similarities and differences
between this class of models and related exactly solvable models: other groups
of multi-chain lattice models, quantum field theory models and magnetic
impurity (Kondo-like) models. Finally, the behaviour of non-integrable (less
constrained) multi-chain quantum models is discussed.
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1. Introduction

Approximate methods are commonly used in theoretical physics of many-body systems.
Probably the best known approximate methods are: perturbation theories, mean-field-like
theories, variational approaches and critical point approximations in their various realizations.
However, exactly solvable models take their own special place among other models of
theoretical physics. There are several situations in which studies of such models are very
important and sometimes necessary. For example, one needs to find an exact solution if a theory
has no small parameter, or if there is no order parameter (i.e. one cannot use a mean-field-like
approach), or if one needs to find some characteristics in a non-perturbative way (e.g. such
phenomena as a renormalization, asymptotic freedom, onset of a mass via the regularization
parameters in the field theory, etc). On the other hand, exactly solvable (integrable) models are
important in their own right—the exact knowledge of some characteristics of one system
yields a possibility of using other powerful approximate methods to study more realistic
physical models. Note that in recent years there have appeared many real systems whose
behaviour can be described by exactly solvable models. The great majority of exactly solvable
models of many-body physics can be divided into two large classes: two-dimensional classical
statistical models and one-dimensional quantum models. Examples of the first class are the
well known Ising model (with a great number of its generalizations), ice-like models and vertex
models [1]. The seminal model for the second class of exactly solvable models is the spin-
1
2 Heisenberg chain with nearest-neighbour (NN) antiferromagnetic (AF) interactions. The
method of solving the Schrödinger equation for this model and related class of models was
pioneered by Bethe [2] and is now known as the Bethe ansatz. It was recognized later (first
of all due to very important works of Yang and Baxter) that the Bethe ansatz can be applied
to models in which the scattering between (quasi-) particles is only elastic (and, obviously,
non-dispersive). Mathematically the condition of elasticity was formulated in the form of the
well known Yang–Baxter equations (YBEs). Suppose one has several (interacting) particles.
Then the YBE for their two-particle scattering matrices can be written as [1]

Ŝ12(u1, u2)Ŝ13(u1, u3)Ŝ23(u2, u3) = Ŝ23(u2, u3)Ŝ13(u1, u3)Ŝ12(u1, u2) (1)

where indices (j = 1, 2, 3) denote particles with quantum numbers (called rapidities) uj
(they are related to momenta of particles). The YBEs mean that each scattering process
produces only a phase shift (and no reflection) and the order of scatterings is not essential.
Rapidities satisfy some set of transcendental equations (known as Bethe ansatz equations,
BAE) [2]. Eigenfunctions and eigenvalues of Schrödinger equations are determined (usually
in a unique way) by that set of rapidities [2]. Later it was recognized that for some exactly
solvable models of the first class (two-dimensional statistical models) their statistical weights
also satisfy YBE [1]. This knowledge permitted the Leningrad (St. Petersburg) group headed
by Faddeev to create the algebraic version of the Bethe ansatz called the quantum inverse
scattering method (QISM) [3, 4]. This method is based on the mapping of a one-dimensional
quantum problem onto the associated two-dimensional statistical problem (as well as being
closely related to the classical inverse scattering method [3, 4]).

In the following we shall review a recently introduced class of exactly solvable models
(which is the obvious generalization of the known Bethe ansatz solvable models). We point
out that our review cannot be complete (i.e. we only refer to those papers which we consider
relevant for the topic of the article—we would like to apologize for not citing papers of other
authors probably related to the topic). The structure of this review article is as follows. In the
remainder of the introduction we briefly recall the main steps of the algebraic Bethe ansatz.
In section 2 we consider the ‘basic’ model of our review: the integrable model with several
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different couplings between particles—the two-chain quantum spin model. The ground-state
properties, low-lying excitations, conformal behaviour of the correlation functions and the
thermodynamics are discussed. In section 3 we consider possible generalizations of the basic
model. Section 4 is devoted to the review of other classes of related exactly solvable models. We
discuss the special case of non-Hermitian Hamiltonians, which also belongs to the considered
class of integrable models, in section 5. In section 6 we show how the knowledge of exact
characteristics of this class of models can be used for the study of more realistic, less constrained
(non-integrable) multi-chain quantum models. Concluding remarks are given in section 7.

Let us recall how the QISM scheme works for the simplest example of the Heisenberg
spin- 1

2 chain (HC, sometimes called the XXX chain) of length L with the Hamiltonian
HHC = J

∑
j SjSj+1. One can start with an R-matrix, which depends on the spectral

parameter u. For the HC the R-matrix has the form

R(u) = [i − a(u)]Î + a(u)P̂ (2)

where a(u) = u/(u + i), Î γ,να,β = δα,βδγ,ν is the identity operator and P̂ γ,να,β = δα,νδγ,β is the
permutation operator. The R-matrices satisfy the YBE

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (3)

where the lower indices denote the Hilbert spaces in which theRmatrix acts. We may consider
spaces 1 and 2 as ‘quantum spaces’ of particles of the system and 3 as the ‘auxiliary space’ of
some additional particle. The Lax L-operators on site l (whose quantum space corresponds
to the Hilbert space of the lth site of the HC), L(u) = P̂R(u), also satisfy the YBE. These
L-operators are direct products of the two-particle scattering matrix acting on the lth site of
the HC and the auxiliary space with unit operators for the Hilbert spaces of the other sites. Let
us define the monodromy operator as the ordered product of L-operators

TL(u) = LL(u)LL−1(u) · · ·L1(u). (4)

Monodromy shows the result of scatterings of an auxiliary particle off all L particles in the
system. By construction the monodromy matrices satisfy the YBE with theR-matrix. The trace
of the monodromy matrix τ(u) = Tr[TL(u)] (taken over the auxiliary space) is the transfer
matrix of the associated two-dimensional statistical vertex problem. As a consequence of YBE
for monodromies, transfer matrices with different spectral parameters mutually commute. This
means that the transfer matrix can serve as a generating functional of the (infinite) number of
conserved quantities, like a Hamiltonian, an operator of the total momentum, etc. For example,
the Hamiltonian of the HC with NN couplings can be constructed by taking the first derivative
of the logarithm of the transfer matrix at zero spectral parameter

HHC = i

2
J
∂ ln τ(u)

∂u

∣∣∣∣
u=0

= J

2

L∑
l=1

Pl,l+1 − LJ

4
(5)

where Pl,l+1 = 2SlSl+1 + 1
2 is the permutation operator for sites l and l + 1 and J is the

exchange constant. In principle, it is possible to construct an infinite number of conservation
laws (integrals of motion, which commute with the transfer matrix and mutually); this means
the exact integrability of the problem.

Now, the goal of the QISM is to find eigenfunctions and eigenvalues of the transfer
matrix. Then the eigenvalues for the conservation laws will be calculated from eigenvalues
of the transfer matrix. We choose the vacuum state |0〉k (in the Hilbert quantum space of the
kth site) as the state with spin up. (Note that for systems without a possibility of introducing
a vacuum state one has to use, e.g., the functional Bethe ansatz; see, e.g., [1].) One can
represent the monodromy matrix TL(u) as the 2 × 2 operator-valued matrix Âij with the trace
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τ(u) = Â11 + Â22. The action of the monodromy matrix on the vacuum state |0〉 = ⊗L
k=1|0〉k

has a ‘triangular’ form (with Â21|0〉 = 0). Another non-diagonal element can serve as a
‘creation operator’ with respect to the vacuum state; i.e., one can use the following form of
eigenstates: |{λ}Mα=1〉 = ∏M

α=1 B(λα)|0〉, whereB = Â12 (M is the number of down spins). The
commutation relations between the elements of the monodromy matrix follow from the YBE.
The action of the transfer matrix on such a state produces the state multiplied by the eigenvalue
(as a function of the spectral parameter u and rapidities λα) and some other ‘unwanted’ terms,
which we wish to cancel. The cancellation of the unwanted terms yieldsM conditions (BAEs)
for the parameters λα . The eigenvalue for the transfer matrix of the HC is

�HC(u) = aL(u)

M∏
α=1

a−1(u− λα + i/2) +
M∏
α=1

a−1(λα − u− i/2). (6)

The BAEs for rapidities have the form

aL(−λα − i/2) =
M∏
β=1
β �=α

a(λβ − λα)

a(λα − λβ)
j = 1, . . . ,M. (7)

The energy of the Hamiltonian (HHC) (determined as the logarithmic derivative of the
eigenvalue of the transfer matrix) and the magnetization have the simple form

EHC = −πJ
M∑
j=1

a1(λα) + EF

Mz
HC = L

2
−M

(8)

whereEF is the energy of the ferromagnetic state with all spins up and an(x) = 2n/π(4x2+n2).
One can easily include an external magnetic field H in the consideration, too: EHC(H) =
EHC(H = 0)−HMz

HC. The BAE can be solved for anyM . The method for the solution of the
BAE in the thermodynamic limit (L,M → ∞,M/Lbeing fixed) was suggested by Hulthén [5].
In this limit one deals with the distributions of rapidities ρ(λ) = limL→∞[L(λα+1 − λα)]−1

(which satisfy Fredholm integral equations). The thermodynamics of the HC can be
constructed either using the ‘string hypothesis’ [6] or with the help of the so-called thermal
Bethe ansatz [7, 8].

The (relative) simplicity of the Bethe ansatz scheme for the HC (e.g., in its algebraic
realization, the QISM) has attracted various studies with a number of very important
generalizations. First, the exact results for the SU(2)-symmetric spin- 1

2 HC have been
generalized for the cases of lower spin symmetry: the uniaxialU(1)-symmetric case [9] and the
case of biaxial spin symmetry [1] (so-called XXZ and XYZ models, respectively). For these
generalizations the coordinate (original) Bethe ansatz scheme was used first, but later it was
understood that in the framework of the QISM one can obtain, for example, aU(1)-symmetric
generalization using the algebraic quantum group (‘q-deformation’) approach (which serves
for a construction of solutions to YBE; then the QISM can be used). Later, on the basis of
the QISM, the solution for the SU(2)-symmetric higher-spin model (the so-called Takhtajian–
Babujian model) [10, 11] was discovered. The other very important generalization of the HC
for the higher-spin situation was the Uimin–Sutherland SU(2S + 1)-symmetric model [12,13]
with the nesting BAE for additional, nesting rapidities (which describe additional degrees of
freedom of SU(2S + 1) symmetry compared with SU(2)). Naturally, the latter cases were
also exactly solved for the uniaxial and biaxial situations. Another important generalization
of the two-dimensional solvable models was the introduction of inhomogeneous shifts of the
spectral parameter [1]; later such shifts were considered in one-dimensional quantum field
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theories (QFTs) [14]. The generalization of the HC model was also realized in a somewhat
different direction: One can study the spin–spin pair coupling not between the NN spins but
rather between pairs of spins connected by chords of a spin chain closed into a ring (so-called
1/r2 interactions) with the Haldane–Shastry model [15, 16] analogous to the HC with the
NN interactions. Later it was shown (see, e.g., [17]) that Bethe ansatz solvable models with
NN interactions and with 1/r2 interactions are in fact two limiting cases of more general
construction of ‘elliptic’ couplings between pairs of particles.

Exactly solvable one-dimensional quantum spin models are also closely related to
the exactly solvable one-dimensional models of correlated fermions. The well known
Jordan–Wigner transformation maps a one-dimensional system of spins 1

2 onto a one-
dimensional system of spinless fermions [18]. On the other hand, a large class of SU(n|m)-
(super)symmetric models of one-dimensional correlated fermionic systems was discovered
(for the simplest case of electrons with spin of one kind n = 1 and m = 2 [19, 20]) and
solved (in the framework of a grading scheme of the QISM; see, e.g., [21]). another seminal
model of one-dimensional correlated electrons—the one-dimensional Hubbard model—was
also exactly solved by the Bethe ansatz [22].

2. Integrable models with several different couplings between particles

As we showed in the introduction, the main feature of the Bethe ansatz solvable models is
only elastic scattering between particles. This is mathematically formulated as the YBEs and,
hence, the latter for two-particle scattering matrices (and, thus, for L-operators, R-matrices
and monodromies) are the necessary conditions for any system to be Bethe ansatz integrable.
This is why for the construction of any new exactly Bethe ansatz solvable Hamiltonians one
needs to look for two-particle scattering matrices satisfying the YBE. In fact, the quantum
group approach is one of the possible realizations of such a search.

Another example of such a program was used for studies of integrable systems with one
particle being involved in interactions with not only two NNs (or infinitely many particles as
in the case of 1/r2 models), but with four (as for the two-dimensional lattice), etc, i.e. with
a finite number of other particles. This is the case for several coupled chains of quantum
particles. Naturally, such systems belong to the intermediate class between quantum one-
dimensional systems without any inter-chain interactions and two-dimensional systems (with
an infinite number of coupled quantum chains). It is known that for Bethe ansatz integrable
two-dimensional quantum systems (or associated three-dimensional statistical systems) one
has to consider not the YBEs (also called ‘triangular’ equations) but rather ‘tetrahedron’
equations [23] (see also [24]). However, due to the huge number of equations to be solved in the
framework of the latter construction, it was understood that it was necessary to look for some
simplifications (i.e. to consider coupled-chain systems within the YBE but for some modified
operators). Note that in fact these realizations are some simple projections of ‘tetrahedron’
equations onto the YBE.

Probably the first example of such a scheme was used by Shastry [25] when he mapped
a one-dimensional Hubbard chain onto two coupled spin chains with special (Ising-like)
interaction between them:

HH = −t
∑
j,τ=±

(c
†
j+1,τ cj,τ + H.c.) + U

∑
j

(nj,+ − 1
2 )(nj,− − 1

2 )

≡ −t
∑
j,l=1,2

(σ +
l,j+1σ

−
l,j + H.c.) + U

∑
j

σ z1,j σ
z
2,j (9)

where c†
j,τ creates an electron with spin τ at site j (nj,τ = c

†
j,τ cj,τ ), and σ±

l,j = σxl,j ± iσyl,j and
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σ zl,j are operators of projections of spin situated at site j of the chain l = 1, 2. In fact in the

QISM for the Hubbard model introduced in [25] Ľ-operators (we will use the checked symbols
for the two- and multi-chain models below) for these two spin chains were constructed as

Ľ(u) = exp(hσ z1,aσ
z
2,a)× L1,j,a(u)× L2,j,a × exp(hσ z1,aσ

z
2,a) (10)

i.e. a product of two L-operators for each chain (Ll,j,a(u), a denotes the auxiliary space), but
with some exponential multiplier (coupling) between them (with the constraint 4t sinh 4h =
U sinh 2u). (Note that the exact Bethe ansatz solution to the one-dimensional Hubbard chain
was already known [22]; this is why the work [25] was a new way of obtaining the known
results but also allowed for a systematic construction of the integrals of motion, which was
very important, in the framework of the QISM.) It was shown that the Ľ-operator with such a
construction satisfied the YBE, hence the whole scheme of the Bethe ansatz could be applied.
Similar constructions with additional factors, which depend only on σ z-operators, for Ľ-
operators were discovered for other (already new) classes of quantum multichain models with
interactions between chains (or, in other words, for models with many kinds of particle) [26–30]
(later re-visited [31]) and for related models with particles of anyon-like fractional exclusion
statistics [32,33]. However for all multi-chain (we shall use this interpretation below) models
based on that simple construction of Ľ-operator the numbers of excitations in each chain
were conserved (i.e. excitations could not move from one chain to another). Excitations can
propagate only along and not across chains. (In the case of the one-dimensional Hubbard
chain this is the trivial consequence of the fact that the numbers of excitations with spin up and
down are conserved separately). This is a very severe condition and seems to be a non-generic
property of multi-chain quantum models.

2.1. Algebra of the basic integrable two-chain model

Another class of Bethe ansatz solutions to a multi-chain problem was discovered in [34–36]
(later some of the results of [34–36] were reproduced in [37]). Namely, we considered the
two-chain Ľ-operator for the site j of the form

Ľj (u) = Lσ1,a ,σ2,j (u + θ)⊗ Lσ1,a ,σ1,j (u)⊗ Lσ2,a ,σ2,j (u)⊗ Lσ2,a ,σ1,j (u− θ) (11)

(where the index j denotes the quantum space, a denotes the auxiliary space) of the product
of four L-operators (with the standard structure of an L-operator of a single Bethe ansatz
solvable chain) each of which satisfies the YBE. The parameter θ determines the strength of
coupling between the chains. One can easily check that Ľ-operators satisfy the YBE, too. The
structure of the Ľ-operator is very clear: we have two chains, hence we have to consider two
quantum spaces and two auxiliary spaces (one set for each chain). The Ř-operator for the
two-chain problem can be constructed similarly to a single-chain case. The normalization for
Ř-matrices implies Ř(u)P̂ Ř(−u)P̂ = 1. The monodromy matrix for this two-chain problem
is the ordered product of L Ľ-operators

ŤL(u, θ) = ĽL(u, θ)ĽL−1(u, θ) · · · Ľ1(u, θ). (12)

Naturally, this monodromy manifests the result of scatterings of two auxiliary particles off
two sets of physical particles in each of the chains. Such a monodromy operator satisfies
the YBE by construction. The transfer matrix τ̌ (u, θ) = Tr[ŤL(u, θ)] is the trace (over
two auxiliary spaces) of the monodromy. The associated two-dimensional statistical vertex
problem is, naturally, the two-layered one. Clearly, transfer matrices with different u and θ
commute (with θ being fixed). Hence τ̌ (u, θ) can be used as a generating functional for an
infinite number of conservation laws, and, this is why the problem is exactly solvable. It is
interesting to point out [35,36] that the transfer matrix of the two-chain problem can be written
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2,j+1 (j+1)

J1

J21,j (j) 1,j+1 (j+2)

2,j (j–1) J2

Figure 1. The two-chain spin- 1
2 model with NN (J1 = 2J

1+θ2 ) and NNN (J2 = θ2

1+θ2 ) interactions.
Note that lattice sites are notated in two equivalent ways: in a two-chain enumeration and in a
single-chain one (see the text).

as τ̌ (u, θ) = τ(u)⊗ τ(u + θ). The Hamiltonian for the two-chain problem can be determined
as the logarithmic derivative of the transfer matrix τ̌ (u, θ) taken at u = 0. The Hamiltonian
of two coupled Heisenberg chains of spins 1

2 can be written as

H2 = J

1 + θ2

∑
j

θ2(S1,jS1,j+1 + S2,jS2,j+1) + 2S1,j (S2,j + S2,j+1)

+2θ(S1,j − S2,j+1)[S1,j+1 × S2,j ] (13)

where [. × .] denotes a vector product. This is the Hamiltonian of the two-chain spin model
with a zigzag interchain coupling (see figure 1 for an illustration). In fact one can re-write
equation (13), i.e. to re-numerate spins. It is easy to see that after such a re-numeration the
Hamiltonian H2 is the Hamiltonian of a single spin chain of length 2L with NN and next-
nearest-neighbour (NNN) interactions

H2 ≡ HNNN = J

1 + θ2

∑
j

2SjSj+1 + θ2SjSj+2 − 2θ(Sj−1 − Sj+2)[Sj × Sj+1]. (14)

For the two-chain problem one can proceed along the same lines of the QISM as for a
single-chain one. We obtain for the eigenvalue for the transfer matrix

�2(u) = aL(u)aL(u + θ)
M∏
α=1

a−1(u− λα + i/2) +
M∏
α=1

a−1(λα − u− i/2). (15)

The BAEs for rapidities have the form

aL(−λα − i/2)aL(−λα − θ − i/2) =
M∏
β=1
β �=α

a(λβ − λα)

a(λα − λβ)
j = 1, . . . ,M. (16)

The energy of the Hamiltonian (H2 = HNNN) can be written as (note that the energy is the
logarithmic derivative of the eigenvalue of the transfer matrix (15))

E2 = −πJ
M∑
j=1

(a1(λα) + a1(λα + θ)) + EF (17)

whereEF is again the energy of the ferromagnetic state with all spins up and the magnetization
isMz

2 = 2L(1/2)−M = L−M . Clearly excitations can move from one chain to another (in
contrast to the previously considered class of multichain quantum models).

One can easily check that the Hamiltonian and BAE reproduce two limiting cases [35,36]:
for θ = 0 one deals with a single HC of length 2L, while the case θ → ∞ corresponds to two
disconnected single HCs of lengths L.
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Let us consider the structure of the Hamiltonian equation (13) or (14). It turns out that the
last (three-spin) term can be written in other ways, namely [34, 35, 51]

H3 = 2Jθ

θ2 + 1

∑
j

(−1)j εklmSkj S
l
j+1S

m
j+2

= 2J iθ

θ2 + 1

∑
j

[S1,j (S2,j + S2,j+1), (S1,jS1,j+1 + S2,jS2,j+1)] (18)

where [., .] denotes a commutator. Obviously this term breaks time-reversal (T) and parity
(P) symmetries separately; however, TP is conserved. In other words, only the common
replacement of 1 ↔ 2 and j+1 ↔ j−1, etc, leaves the Hamiltonian unchanged. Physically the
origin of such an interaction may be due to the spin–orbit coupling in the case where the orbital
motion of electrons is frozen at sufficiently low temperatures [35]. In fact one can determine a
local spin chirality as εklmSk1S

l
2S
m
3 (where 1, 2, 3 numerate the NNs) (see, e.g., [34,35,38] for

multi-chain systems and [39,40] for two-dimensional spin lattices). Hence for real θ the three-
spin term can be considered as a spin chirality field in the two-chain Hamiltonian [34–36, 51]
(in fact, it is the staggered field, thus one can speak about the spin antichirality [34, 51]). In
other words, this value measures spin currents around each of the elementary plaquettes. In
the classical limit the effect of this term is analogous to (in a phase with a zero ferromagnetic
moment) the time component of some topological (Noether) current [35, 36]

I0 = θ

2π

∫
d2x εklmεµνn

k∂µn
l∂νn

m µ, ν = 1, 2 (19)

where ni (i = x, y, z) is the vector of the classical density of spin with n2 = 1. This three-spin
term is the definition of the Pontryagin index (topological charge or winding number [41]),
which determines topologically nontrivial distributions of the spin density in the system. In
(3 + 1) systems one has to study Hopf invariants [42]; for the (2 + 1) ones the same role
is played by the topological Chern–Simons term [44], while in the (1 + 1) system it is the
so-called θ -vacuum [45] (see, also, [46, 47]). (It turns out that for the (1 + 1) and (3 + 1)
cases it is impossible to construct a conserved scalar or pseudoscalar with the properties of
the topological charge: for example, for the (3 + 1) situation one has a vector Iα instead of a
scalar I0.) For the (2 + 1) case I0 is the characteristic of the homotopy class π2(S2) = Z—
the distribution of n is topologically nontrivial if π2(S2) �= 0 [43]. From this viewpoint
the three-spin term is a remarkable example of the two-dimensional nature of the system
seen even for two coupled chains (definitely such terms should be absent from the pure one-
dimensional case, with only NN interactions, cf [46]). In the classical limit this term is the
total time derivative ∂0I0 = 0 [35, 36], hence it does not affect classical equations of motion
(and classical configuration of spins [38]). However, it is very important in the quantum
mechanics [35, 36, 38, 51], see below. Namely, the presence of this term destroys the spin
gap of low-lying excitations [35, 38], and this is why in the long-wave limit the model can be
described as a conformal field theory. The effect of a magnetic field perpendicular to the plane
passing through the chains is also analogous to our topological three-spin term [35, 48]: this
term is an effective surface term in the spin space. Models of this class of exactly solvable
lattice multi-chain quantum spin models are a good example of chiral spin liquids [39] but
with explicitly (not spontaneously) broken T and P symmetries.

For real θ (and for positive J ) the first two terms in the Hamiltonian equations (13) and (14)
correspond to the antiferromagnetic NN and NNN interactions, thus to the spin-frustrated case.
On the other hand, the imaginary values of θ pertain to the non-Hermitian Hamiltonian (three-
spin term) and either AF or ferromagnetic (F) NN and NNN interactions.
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It is clear that in fact the Hamiltonian equation (13) consists of the sum of two commuting
parts H2 = H̄2 + H̃2. The first part, H̄2, includes pair interactions only between the spins of
chain 1 and between the spins of chains 1 and 2, and three-spin couplings between two spins
from chain 1 and one spin from chain 2, while H̃2 includes the remnant couplings. For each of
these parts we have the L̃-operator being the direct product of only two L-operators of a single
HC (each with their own auxiliary spaces and alternating shifts of the same spectral parameter).
Naturally, their transfer matrices commute. The eigenvalues for the transfer matrices for each
of these subsystems have the form of equation (15). The Hamiltonians of each of these parts
have also a ‘triangular’ structure. In the language of a single chain, equation (14), the latter
decomposition means that one can decouple the total system into two subsystems, for each
of which one has pair spin NN interactions and NNN interactions only between even (odd)
sites. Obviously, one can consider these two subsystems with different overall constants J1,2

and of different lengths L± [49, 50], while the shift θ has to be the same for both subsystems
(to satisfy the YBE). In the next sections we shall deal with the simplest (and, probably, the
most important) situation J1 = J2 = J > 0 and L+ = L− = L, and return to the case with
different exchange constants and lengths in the following sections.

2.2. The nonmagnetic ground state

After a simple change of variables, equations (16) and (17) can be written as∏
±
eL1 (λα ± θ/2) =

M∏
β=1
β �=α

e2(λα − λβ) α = 1, . . . ,M

E2 − EF = −H(L−M)− πJ
∑
±

M∑
α=1

a1(λα ± θ/2)

(20)

where en(x) = (2x + in)/(2x − in). Note that an(x) = (i/2π)(∂en(x)/∂x). Let us first
concentrate on real values of θ , i.e. on the Hermitian Hamiltonians. It is easy to show that in
the ground state the solutions of the BAE pertain to only real values of rapidities λα [34–37].
The solution to the BAEs (20) is usually obtained in the thermodynamic limit: Instead of
the discret set of rapidities one introduces a distribution of a continuous density of rapidities.
The ground state pertains to solutions of the BAE with negative energies, i.e. it is connected
with the filling up of Dirac sea(s) for a model. In the thermodynamic limit the real roots of
equations (20) are continuously distributed over certain intervals, which determine the Dirac
sea(s) of the two-chain model. The set of integral equations for the ‘dressed’ densities of
rapidities λα (ρ(λ)) and ‘dressed’ energies of low-lying excitations (ε(λ)) are

ρ(λ) +
∫
(Q)

dν K(λ− ν)ρ(ν) =
∑
±
ρ0

±(λ± θ/2) (21)

and

ε(λ) +
∫
(Q)

dν K(λ− ν)ε(ν) =
∑
±
ε0
± (22)

where the kernel of integral equations is K(u) = a2(u). The values

ρ0
±(u) = a1(u± θ/2) ≡ i

dp0
± (u± θ/2)

du
(23)

are ‘bare’ densities of rapidities (p = ∑
± p

0
±(λ± θ/2) + π is the total ‘bare’ momentum of

the system) and

ε0
±(λ) = H

2
− πJa1(λ± θ/2) (24)
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are ‘bare’ energies (here ‘bare’ corresponds to the case without interactions, i.e. without integral
terms, and an interaction ‘dresses’ them as usual). The integrations are performed over the
domain (Q), determined in such a way that the dressed energies inside these intervals are
negative. The limits of integrations are determined by zeros of the dressed energies, and are
the Fermi points for each sea.

For zero magnetic field (Mz
2 = 0) it is easy to solve the problem (in this case all λ are

distributed along the real axis from −∞ to ∞) and the ground-state energy is [34–38]

E2 − EF = −2LJ
∫ ∞

−∞
dω

cos2(ωθ/2)

1 + exp |ω|
= −2LJ ln 2 − LJ

2

∑
±

[
<

(
2 ± iθ

2

)
−<

(
1 ± iθ

2

)]
(25)

where <(x) is a digamma function and EF = LJ(2 + θ2)/4(1 + θ2). It turns out that the
ground-state energy is an even function of the coupling parameter θ . Obviously the ground-
state value of E2 − EF is also a periodic function of θ : it is not changed by the replacement
θ → θ + 2in (n integer). This property is connected with the topological effects of the H3

term in the Hamiltonian [35].
The lowest excitation is a spinon [37, 38, 51, 64] (a hole in the distribution of rapidities

λ [52,53]). Note that, as usual for periodic boundary conditions, for topological reasons these
spinons can appear only in pairs. Suppose we have a hole with the rapidity λ0. Than the
quasimomentum of a spinon is

p(λ0) = 2 tan−1

(
sinh(πλ)

cosh(πθ)

)
(26)

while its energy is

εsp = −J ∂p
∂λ0

= πJ

2

∑
±

1

cosh(λ0 ± θ/2)
. (27)

It is easy to find the dispersion law for a spinon (see figure 2) [51]

εsp(p) = πJ sin
(p

2

) √
1 − tanh2

(
πθ

2

)
sin2

(p
2

)
(28)

where p is the quasimomentum of the spinon. The spinon is gapless. One can see that
εsp(θ) = εsp(θ + 2in) (n is integer), which also pertains to the topological properties of the
H3 term in the Hamiltonian [38]. Hence elementary excitations of the two-chain model carry
nonzero topological charge (measured byn). It turns out that the dynamics of the magnetization
(near p = 0) is connected with the gapless part of the spinon’s dispersion law, while the
dynamics of the staggered magnetization (near p = π ) pertains to the gapped part.

Let us consider conformal properties of the system. As a consequence of the conformal
invariance of (1 + 1) quantum systems, the classification of universality classes is simple in
terms of the central charge (conformal anomaly c) of the underlying Virasoro algebra [54–57].
Critical exponents in a conformally invariant theory are scaling dimensions of the operators
within the quantum model. They can be calculated considering the finite-size (mesoscopic)
corrections to energies and quasimomenta of the ground state and low-lying excited states.
Conformal invariance formally requires all gapless excitations to have the same velocity
(Lorentz invariance). The complete critical theory for systems with several gapless excitations
with different Fermi velocities is usually given as a semidirect product of these independent
Virasoro algebras [58–62]. ForH = 0 the conformal limit of the two-chain model corresponds
to a level-one Kac–Moody algebra (one Wess–Zumino–Novikov–Witten (WZNW) model
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Figure 2. The dispersion law εsp(p) for the ‘basic’ two-chain spin 1
2 model as a function of the

quasimomentum p and coupling θ . The exchange constant J is equal to unity; H = 0.

of level one with the conformal anomaly c = 1). The finite-size correction to the energy
(E = E2 + EF + Efs + · · ·) is rather standard [63]

Efs = − πv

12L
+
πv

L
(=l +=r) (29)

where v = πJ/2 is the Fermi velocity of the dispersion law, linearized about the Fermi points
(p = 0, 2π ), of a spinon, and the conformal dimensions of primary operators are (indices
denote the conformal dimensions for right- and left-moving quasiparticles, at the right and left
Fermi point, respectively)

2=l,r =
(
=M

2z
± z=D

)2

+ 2nl,r. (30)

Here=M is an integer denoting the change of the number of particles induced by the primary
operator, =D is an integer (half-integer) denoting the number of transferred particles from
the right to the left Fermi point (backward scattering processes) and nl,r are the numbers of
particle–hole excitations of right- and left-movers. The values for the quantum numbers are
restricted by the condition =D = =M/2 (mod 1). The ‘dressed’ charge z = ξ(Q) (one can
see that this quantity measures the number of bare particles which form the dressed excitation
ξ = −∂ε/∂µ, where µ is the generalized chemical potential) is the solution of the (standard)
integral equation [58–60]

ξ(λ) +
∫
(Q)

dν K(λ− ν)ξ(ν) = 1 (31)

taken at the limits of integration λ = ±∞ (these are the Fermi points, symmetric with respect
to zero). The dressed charge is a scalar, and z is equal to 1/

√
2 (recall, for zero magnetization).

Correlation functions of low-lying excitations decay asymptotically ∝ (x−ivt)−=l(x+ivt)−=r .
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The choice of the appropriate quantum numbers of excitations=M ,=D and nl,r is determined
for the leading asymptotics of correlators by taking possible numbers with the smallest
exponents. Note that in fact nothing depends on the coupling constant θ in the conformal
limit for H = 0, i.e. the conformal behaviour of the two-chain model at H = 0 is the same as
for an HC [63].

2.3. Ground-state properties in an external magnetic field

Let us now switch on an external field H �= 0. Here the situation appears to be very different
for different values of the coupling constant θ [38, 64].

For small θ < θc = 1/
√

3 there is only one Fermi sea for spinons (i.e. there is only one
minimum in the distribution of dressed energies). This is in a one-to-one correspondence
with the behaviour of the dispersion law of a spinon: the latter has only one extremum
(maximum) at p = π/2 for any values of H � Hs (Hs = 4J/(1 + θ2)). For H � Hs (where
M = 0) the system is in the spin-saturation, ferromagnetic (F) phase at zero temperature and
spinons become gapped. The magnetic susceptibility manifests a square root singularity atHs:
χ(H) = 2/π

√
(Hs − 3J )(Hs −H). It is nothing other than the one-dimensional van Hove

singularity of an empty Dirac sea of spinons. For H � Hs the conformal behaviour can be
described by equations (29)–(31) with Q = Q(H) as for the H = 0 case (the only difference
is that now the Fermi velocity of the spinons depends on H and z varies between 1/

√
2 at

H = 0 and 1 for H → Hs). In a weak magnetic field the magnetic susceptibility is given
by χ = (2πv)−1 = (π2J )−1(1 + (2| lnAH |)−1 − (ln | lnAH |/4 ln2 AH) + · · ·) where A is
a non-universal constant [34,36] (logarithmic corrections appear due to the SU(2)-symmetry
of the model).

At θ = θc there is also one minimum in the distribution of dressed energies and, hence, only
one maximum of the dispersion law of a spinon. However, these extrema are flatter: instead
of the behaviour of the dressed energies ∼ λ2 for θ < θc, for θ = θc it is ∼λ4. This is why the
magnetic susceptibility manifests the different singularity χ(H) = 1/3Jπ(Hs −H)3/4 at Hs

(which is equal to 3J at θc). For H � Hs the conformal behaviour is similar to the previous
case, while for H � Hs elementary excitations are qapped.

For θ > θc there are two minima and one maximum in the distribution of dressed
energies (the dispersion law of a spinon also reveals one minimum and two maxima) (see
figure 3 for an illustration). Hence, the ground-state behaviour strongly depends on the
value of external magnetic field. There are two critical values of the field for θ > θc. For
H � Hs = J [1 + (

√
1 + θ2/θ)] the two-chain system is in the spin-saturated phase with

gapped spinon excitations. The magnetic susceptibilty also manifests square-root singularity
atHs (χ ∼ 1/

√
Hs −H ). ForH < Hs spinons are gapless. There exists an additional critical

value of external magnetic field, Hc [38, 64] (its dependence on θ can be approximated by
Hc ≈ πJ/ cosh(πθ/2) [38]). For H < Hc there is only one Dirac sea for spinons. The
conformal behaviour is similar to the previous cases, i.e. we have one WZNW model of level
one with the conformal anomaly c = 1. However for H > Hc the behaviour is drastically
changed: there are two Dirac seas for spinons (with four Fermi points) [38, 64]. In fact one
can speak about the onset of the Dirac sea of ‘holes’ of spinons for H > Hc [38]: according
to this picture the critical field Hc pertains to the van Hove singularity of the empty band of
these ‘holes’ of spinons. Note that at θ = θc,Hc = Hs, i.e. this point is tricritical. For θ > θc,
H > Hc, the conformal limit of the two-chain model corresponds to the semidirect product of
two level-one Kac–Moody algebras, both with conformal anomalies c = 1, i.e. to two WZNW
models both of level one [38,64]. The Dirac seas (i.e. possible spinons with negative energies)
are in the intervals [−Q+,−Q−] and [Q−,Q+] (minima in the distributions of rapidities at
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∓θ/2). This can be interpreted as the symmetrically distributed (around zero) Dirac seas of
‘particles’ for [−Q+,Q+] and the Dirac sea of ‘holes’ for [−Q−,Q−]. Naturally, the Fermi
velocities of ‘particles’ are positive, v+ = (2πρ(Q+))−1ε′(λ)|λ=Q+ , while the Fermi velocities
of ‘holes’ are negative, v− = −(2πρ(Q−))−1ε′(λ)|λ=Q− . The finite-size corrections to the
energy for this case are

Efs = − π

12L
(v+ + v−) +

π

L

(
v+(=+

l +=+
r ) + v−(=−

l +=−
r )

)
(32)

where the dispersion laws of ‘particles’ and ‘holes’ are linearized about the Fermi points for
each Dirac sea. The conformal dimensions of primary operators are (the upper indices denote
Dirac seas; the lower indices denote right and left Fermi points of each of these two Dirac
seas):

2=∓
l,r =

[
(x−±=M+ − x+±=M−)

2 det x̂
∓ (z−±=D+ − z+±=D−)

2 det ẑ

]2

+ 2n∓
l,r (33)

where the ‘minus’ sign between the terms in square brackets corresponds to the right-movers
and ‘plus’ to the left-movers. Here =M± denote the differences between the numbers of
particles excited in the Dirac seas of ‘particles’ and ‘holes’, labelled by the upper indices.
=D± denote the numbers of backward-scattering excitations, and n±

l,r are the numbers of
particle–hole excitations for right- and left-movers of each of the Dirac seas (for ‘particles’
and ‘holes’). Note that =M± and =D± are not independent. Their values are restricted by
the following relations: =M+ −=M− = =M and=D+ −=D− = =D, where=M and=D
determine in a standard way the changes of the total magnetization and the total momentum
of the system, respectively, due to excitations. Four backscattering low-lying excitations
are possible; however, only two of them are really independent, due to the above-mentioned
relations. The same is true for excitations that change the total magnetization of the system:
there are only two independent of four such possible excitations. This is the direct consequence
of the fact that only one magnetic field determines the filling of the Dirac seas for ‘particles’
and ‘holes’, or, in other words, the filling of the two Dirac seas for spinons centred at ±θ/2.

The dressed charges xik(Qk) and zik(Qk) (i, k = +,−) are matrices in this phase. They
can be expressed by using the solution of the integral equation [50, 65]

f (u|Q±) =
( ∫ Q+

−Q+
−

∫ Q−

−Q−

)
K(u− v)f (v|Q±) = K(u−Q±) (34)

with

zik(Q
k) = δi,k + (−1)k 1

2

( ∫ ∞

Qi

−
∫ −Qi

−∞

)
dv f (v|Qk)

xik(Q
k) = δi,k − (−1)k

∫ Qi

−Qi

dv f (v|Qk).

(35)

Note that the dressed charges depend on the value of the coupling constant θ indirectly,
only via the limits of integrations. In the first-order approximation one can write the

solutions as xik(Qk) ≈ δi,k − (−)k ∫ Qi

−Qi dv K(v − Qk) + · · · and zik(Q
k) ≈ δi,k +

(−)k(1/2)(∫ ∞
Qi − ∫ −Qi

−∞ ) dv K(u−Qk) + · · ·. The Dirac sea for ‘holes’ disappears, naturally,
for H → Hc, θ → θc. The slopes of the dressed energies of ‘particles’ and ‘holes’ at Fermi
points of the Dirac seas (Fermi velocities) differ in general from each other. Therefore we
have a semidirect product of two algebras. Hence, in this region the dressed charges are 2 × 2
matrices. At the critical lineHc the Dirac sea of ‘holes’ disappears (as well as the components
of the dressed charge matrix x̂) with square root singularities of the critical exponents for the
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Figure 3. The qualitative picture for the dressed energy of spinons of the ‘basic’ two-chain model
εsp as a function of the rapidity (u) for different coupling parameters θ , θ < θc (a), θ = θc (b) and
θ > θc (c). Depending on the value of the magnetic field H there is one Fermi sea in case (a), but
up to two Fermi seas in case (c). The limiting case of a dressed energy function εsp(u) with just
one minimum and that with two minima and one maximum is shown in (b). Here all derivatives
of order one to three vanish at u = 0. Filled circles and filled squares denote Fermi points for
‘particles’ and ‘holes’ for H �= 0. Note that for the case (c) for H < Hc there are only two Fermi
points (open circles).

correlation functions [65]. Note that the dressed charge z becomes z = (2x)−1 at the phase
transition line Hc. This corresponds to the disappearance of one of the WZNW conformal
field theories. Correlation functions of the two-chain model decay algebraically in this phase
∝ (x− iv+t)−=

+
l (x + iv−t)−=

−
l (x− iv+t)−=

+
r (x + iv−t)−=

−
r with minimal exponents of possible

quantum numbers of excitations =M±, =D± and n±
l,r. We point out once again that the same

magnetic field plays the role of a generalized chemical potential for the ‘particles’ and ‘holes’
(or, in other words, for spinons of both Dirac seas in the second phase), and hence this choice
of ‘minimal quantum numbers’ is constrained.

We must point out here that there is a crucial difference between the two-chain model
and the case of dressed charge matrices appearing for systems with the internal structure of
bare particles [61,62]. In the latter the two Dirac seas of the ground states are connected with
different kinds of excitation, for example holons and spinons for the repulsive Hubbard model,
or Cooper-like singlet pairs and spinons for the supersymmetric t–J model. They pertain to
two different kinds of Lagrange multiplier (generalized chemical potentials): the chemical
potentials and magnetic fields. Thus the low-lying excitations of the conformal theories in
the spin and charge sectors of these correlated electron models are practically independent of
each other (spin–charge separation). (Note that the spin and charge sectors are connected via
the off-diagonal elements of the dressed charge matrix though. This is the consequence of the
fact that, say, holons or unbound electrons carry both charge and spin.) On the other hand,
two Dirac seas appear for the same kinds of particle for the two-chain models reviewed in this
article, which are also connected with the same magnetic field, governing the filling of both
Dirac seas. The latter appear due to two minima in the bare energy distribution and correspond
to nonzero shift θ in the BAE. In other words, two Dirac seas are determined by the intra-chain
coupling (in a two-chain picture) or by the NNN coupling (in a single-chain description) and
appear if the values of coupling and external magnetic field are higher than the threshold values
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Figure 4. The dispersion law εsp(p) for the ‘basic’ two-chain spin- 1
2 model as a function of the

coupling θ and quasimomentum p. The exchange constant J is equal to unity; H = 5.

θc and Hc, respectively. We believe that such a threshold behaviour does not depend on the
integrability of the model and is the generic feature for any multi-chain quantum spin model.

It is worthwhile to write down the dispersion for a spinon for H > Hs (see figure 4):

εsp(p) = H − J sin2
(p

2

) 
1 − cos

(
p

2

)
cos

(
p

2

)
+

√
1 + θ2 sin2 (

p

2

)

 . (36)

Note that instead of the cusp of figure 2 for large θ , the dispersion law of a spinon in an F state
manifests a minimum.

The zero-temperature phase diagram (θ–H ) is presented in figure 5. There are three
phases: the spin-saturated (ferromagnetic) phase (with gapped excitations) and two phases
with gapless excitations—the commensurate one for small θ and incommensurate [38,50] for
large θ and Hc < H < Hs.

2.4. Thermodynamics

The thermodynamics of the two-chain model in the framework of the ‘string hypothesis’ was
built in [36] (see also [49] for the case with J1 �= J2). However, some concerns appear about
the validity of string solutions for large lengths of strings [66–69]. Therefore in this review
article we shall use a different approach, the thermal Bethe ansatz [8] in the framework of the
‘quantum transfer matrix’ (QTM).

For our quantum two-chain spin Hamiltonian at finite temperature we found a suitable
lattice path integral representation by a mapping preserving integrability. For a general
formulation of Trotter–Suzuki decompositions the reader is referred to [70]. Let Rµiµi+1

αiβi
(x)



R36 A A Zvyagin

tricritical point

H

Hs 2nd order

Hc 2nd order

ferro

0

1

2

3

4

1 2 3 4 5 6
theta

Figure 5. The ground-state phase diagram in the magnetic field–coupling parameter plane H–
θ for the two-chain spin- 1

2 AF model for J = 1. There are three phases: the spin-saturated
(ferromagnetic) phase, the commensurate phase (with one Dirac sea for low-lying excitations,
see figure 3(a)) and the incommensurate one (with two Dirac seas for low-lying excitations, see
figure 3(c)). Two second-order phase transition lines merge at the tricritical point (see figure 3(b)).

be the standard R-matrix of the HC. Here indices αi and βi denote states of the spin at site i
(physical quantum space), and µ denotes states in the auxiliary space. The ‘standard’ transfer
matrices (row to row from the viewpoint of the statistical two-dimensional problem) have the
form of the trace over the auxiliary space of the product ofR-matrices. We introduceR-matrices
of different type, related to the initial one by an anticlockwise rotation R̄µναβ (x) = Rαβνµ(x) and

R̃
µν
αβ (x) = Rβαµν (x) by clockwise rotation. The transfer matrix τ̄ (x, θ) can be constructed in a

way similar to the case of τ . Then we construct Ř-matrices for the two-chain model according
to the rules of the previous subsections. We substitute x = −J/2NT , where N is the Trotter
number, and find

[τ(x)⊗ τ(x + θ)⊗ τ̄ (x)⊗ τ̄ (x + θ)]N/2 = e−H2/T +O(1/N). (37)

Hence, the partition function of the two-chain quantum model is identical to the partition
function of a two-layer (inhomogeneous) classical vertex two-dimensional model with
alternating rows on a square lattice of size L×N

Z = lim
N→∞

Tr[τ(x)⊗ τ(x + θ)⊗ τ̄ (x)⊗ τ̄ (x + θ)]N/2. (38)

The interactions on the quasi-two-dimensional two-layer lattice are four-spin interactions
with coupling parameters depending on (NT )−1 and interaction parameters θ . Note that
the interactions are homogeneous in each column, but vary from column to column. We study
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this system in the limit N,L → ∞ using an approach which is based on a transfer matrix
describing transfer in the horizontal direction. The corresponding column-to-column transfer
matrices are referred to as QTM (where an external magnetic field is included by means of
twisted boundary conditions):

τQTM(x, θ) =
∑
µ,ν

eµ1H/T eν1H/T

N/2∏
i=1

R
µ2i−1µ2i
α2i−1β2i−1

(x + iθ)⊗ R̃
µ2iµ2i+1
α2iβ2i

(x − iθ)⊗ R
µ2i−1µ2i
α2i−1β2i−1

(x)

⊗R̃µ2iµ2i+1
α2iβ2i

(x)⊗ R
ν2i−1ν2i
α2i−1β2i−1

(x)⊗ R̃
ν2iν2i+1
α2iβ2i

(x)⊗ R
ν2i−1ν2i
α2i−1β2i−1

(x − iθ)

⊗R̃ν2iν2i+1
α2iβ2i

(x + iθ). (39)

In general all QTMs corresponding toL columns can be different. However, all these operators
can be proven to commute pairwise. Therefore, the free energy per lattice site of our model can
be calculated from just the largest eigenvalues of QTMs (corresponding to only one eigenstate).
The free energy per site F of the quasi-one-dimensional quantum two-chain model is given
by only the largest eigenvalue of the QTM �QTM

F = − lim
L→∞

T

L

L∑
i=1

lim
N→∞

ln�QTM(x)�QTM(x + θ) (40)

where x = − J
2TN and the dependence on N is understood implicitly.

By means of a Bethe ansatz we find the eigenvalue of the QTM to be given by
�QTM = �(0)�(θ)/2N , where �(u) = λ1(u) + λ2(u) and

λ1(u) = φ+(u)φ−(u− 2i)eH/T
Q(u + 2i)

Q(u)

λ2(u) = φ−(u)φ+(u + 2i)e−H/T Q(u− 2i)

Q(u)
.

(41)

Here we have dropped the dependence on x and θ , which are fixed, and consider the
dependence on the spectral parameter u explicitly. We have used φ±(u) = (u ± ix) and
Q(u) = ∏m

j=1(u − xj ). Here {xj }mj=1 is the set of rapidities which are subject to the BAE.
For the largest eigenvalue one has to take m = N/2. However, we shall not solve the BAE
directly, but rather shall be interested in the functional properties of the eigenvalue of the transfer
matrix. For this purpose we introduce four auxiliary functions b(u), b̄(u), B(u) = 1 + b(u)
and B̄(u) = 1 + b̄(u) by

b(u) = λ1(u + i)/λ2(u + i)
b̄(u) = λ2(u− i)/λ1(u− i).

(42)

Then one can straightforwardly check that

�(u + i) = B(u)λ2(u + i) = e−H/T ∏
±
φ±(u + 2i ± i)

Q(u− i)

Q(u + i)

�(u− i) = B̄(u)λ1(u− i) = eH/T
∏
±
φ±(u− 2i ± i)

Q(u + i)

Q(u− i)
.

(43)

Obviously

b(u) = e2H/T
∏
±

φ±(u± i)

φ±(u + 2i ± i)

Q(u + 3i)

Q(u− i)

b̄(u) = e−2H/T
∏
±

φ±(u± i)

φ±(u− 2i ± i)

Q(u− 3i)

Q(u + i)
.

(44)
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One can see that these auxiliary functions are analytic, non-zero and have constant
asymptotic behaviour for the strip −1 < Im u � 0 for b(u) and B(u), and for the strip
0 � Im u < 1 for b̄(u) and B̄(u). Introducing a(u) = b( 2

π
(u+iε)) and ā(u) = b̄( 2

π
(u−iε)) (an

infinitesimal ε > 0), taking the logarithmic derivative of these functions, Fourier transforming
the equations, eliminating the functionsQ(u) and then inverse-Fourier transforming, we obtain
the final set of two nonlinear integral equations. Eventually, we take the limit N → ∞.
Proceeding in this way we find for our system the following set of nonlinear integral equations
for the ‘energy density’ functions of spinons a, ā, A = 1 + a and Ā = 1 + ā in dependence on
the spectral parameter u:∫ [

k(u− y) lnA(y)− k(u− y − iπ + iε) ln Ā(y)
]

dy

= ln a(u) +
v

T cosh u
+

v

T cosh(u + θ)
− H

2T
(45)

with v = πJ/2 and kernel function

k(x) = 1

2π

∫
dω

e−iπωx−π |ω|/2

2 cosh( πω2 )
. (46)

The corresponding equation for ā(u) is obtained from equation (45) by exchanging i → −i,
H → −H and a,A ↔ ā, Ā. The free energy per site F is given by

F(u) = e0(u)− T

2π

∫
ln[A(y)Ā(y)] dy

cosh (u− y)
(47)

where e0 is the ground-state energy. The free energy of the total two-chain model is
F = f (π2 θ) + f (0). These equations are easily solved numerically for arbitrary magnetic
field values and temperatures. Analytic results can be obtained for high and low temperatures,
as usual. For high temperatures T � J with H/T fixed we find that the free energy of the
system is just the energy of 2L noninteracting spins 1

2 in a magnetic field with the magnetization
Mz = L tanh(H/T ) [36]. For low temperatures T � J the free energy is quadratic in T
with the specific heat C = πT/6v [36] out of the critical in H region (i.e. for H �= Hc,s). In
the critical region the low-T free energy is proportional to T 3/2 and in the tricritical point it is
proportional to T 5/4.

3. Generalizations of the two-chain model

3.1. Anisotropy

The ‘basic’ model introduced in the previous section can be (and was) generalized in a
straightforward manner. The first generalization is the inclusion of a magnetic anisotropy
(here we limit ourselves to the U(1)-symmetric uniaxial case, but the generalization to the
biaxial case is straightforward, although more sophisticated).

In the uniaxial case we can use the L-operator of an XXZ single chain (the parameter
γ characterizes the uniaxial ‘easy plane’ magnetic anisotropy) to construct the Ľ-operator
for two-chain model [34]. The algebra is straightforward [34, 50], hence we should like to
emphasize the differences between the isotropic and anisotropic cases. The Hamiltonian of
the two-chain uniaxial model can be written as

Ĥ2anis = J sin2 γ

sinh2 θ + sin2 γ

∑
j

sinh2 θ

sin2 γ

(
S1,jS1,j+1 + S2,jS2,j+1

−(1 − cos γ )(Sz1,j S
z
1,j+1 + Sz2,j S

z
2,j+1)

)
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+2 cosh θ

(
S1,j (S2,j + S2,j+1) +

(
cos γ

cosh θ
− 1

)
(Sz1,j (S

z
2,j + Sz2,j+1))

)

+
2 cos γ sinh θ

sin γ

(
(S1,j − S2,j+1)[S1,j+1 × S2,j ]

+

(
cosh θ

cos γ
− 1

)
(Sz1,j − Sz2,j+1)[S1,j+1 × S2,j ]

z

)
. (48)

In this case we can use en(x) = sinh[x + i(nγ /2)]/ sinh[x − i(nγ /2)] and an(x) =
(i sin γ /2π)(∂en(x)/∂x) in equations (20). The isotropic SU(2)-symmetric case can be
obtained in the limit λα → γ λα , θ → γ θ , γ → 0. The ‘easy-axis’ case is reached by
the replacement γ → iγ .

The ground-state energy for the nonmagnetic case H = 0 is given by [34]

E2anis = LJ cos γ
(2 sin2 γ + sinh2 θ)

4(sinh2 θ + sin2 γ )
− 2LJ sin γ

∫ ∞

−∞
dω

sinh[(π − γ )ω] cos2(ωθ/2)

sinh(πω) cosh(γω)
.

(49)

For the ‘easy axis’ case we have [34]

E2anis = LJ cosh γ
(2 sinh2 γ + sinh2 θ)

4(sinh2 θ + sinh2 γ )
− 2LJ sinh γ

∞∑
m=−∞

cos2(mθ/2)

1 + exp(2mγ )
. (50)

The dispersion law for a spinon in the case of the critical ‘easy-plane’ (gapless) situation
is [50] (see figure 6 for an illustration)

ε(p) = J
π

γ
sin γ sin

(p
2

) √
1 − tanh2

(
πθ

γ

)
sin2

(p
2

)
. (51)

Note that if, for small anisotropy γ , the value of θ is large enough to produce a cusp (minimum)
for the dispersion law of a spinon, for larger values of γ a one-maximum dispersion law of the
spinon is restored.

In fact the ground-state behaviour of this ‘easy-plane’ two-chain model in the nonzero
magnetic field is similar to the isotropic case [50] with the renormalized values of Hs and
Hc ≈ π sin γ /γ cosh(πθ/γ ) and 1 ≈ sinh(πθc/γ ) [50]. This implies three possible phases in
the ground state: the spin-saturated (ferromagnetic) phase forH > Hs with gapped excitations,
the commensurate critical phase with one Dirac sea for low-lying gapless excitations for θ < θc

and θ > θc,H < Hc, and the incommensurate critical phase with two Dirac seas for low-lying
gapless excitations for θ > θc, H > Hc. The point H = Hc = Hs, θ = θc is the tricritical
point.

3.2. Different L± and J1,2

What are the changes due to different lengths of the chains L1 �= L2 and/or J1 �= J2 for H̄2

and H̃2 (and for their anisotropic analogues)? In this case one has the construction of the
transfer matrix, for example as τ̌ (u, θ) = τ J1(u) ⊗ τ J2(u + θ). One can obviously see that
the values of the momentum, energy and velocity of a spinon (which was v = πJ sin γ /2γ
for the anisotropic case) become functions of (L+ − L−) and J1/J2 [49, 50]. For example,
the Fermi velocity renormalizes as v → v[1 + (L+ − L−)2 tanh2(πθ/2γ )/(L+ + L−)2]−1.
This introduces dependences of the critical values θc and Hc (as well as of the saturation field
Hs) on the difference (L+ − L−). Also, the Fermi velocities and Fermi points for finite-size
corrections become dependent of this difference. Different coupling constants J1,2 for each of
chains with the Hamiltonians H̄2 and H̃2 (overall multipliers [49]) produce renormalizations
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Figure 6. The dispersion law εsp(p) for the ‘easy-plane’ two-chain spin- 1
2 model as a function

of the quasimomentum p and anisotropy γ . The exchange constant J is equal to unity; θ = 0.2,
H = 0.

similar to the action of L+ �= L−. For example, the Fermi velocity renormalizes as
v → v[1 + (J1/J2)

2 tanh2(πθ/2γ )]−1 (where v = πJ1 sin γ /2γ ).

3.3. Higher-spin generalizations

For the higher-spin generalizations of the Bethe ansatz theory presented in section 2 we can
write down the BAE in the form∏

±
eL±
n± (λα ± θ/2) =

M∏
β=1
β �=α

e2(λα − λβ) (52)

where n± = 2S± are the values of spins in each chain. The eigenvalue of the transfer matrix
can be written as

�(u) =
M∏
α=1

sinh(u− λα + iγ 1
2 )

sinh(λα − u + iγ 1
2 )

+
∏
±

(
sinh(u± θ/2)

sinh(iγ n±
2 − u∓ θ/2)

)L±

×
M∏
α=1

sinh(λα − u + iγ 3
2 )

sinh(u− λα − iγ 1
2 )
. (53)

For the case S+ �= S− the system is the quantum two-chain ferrimagnet. For spins S �= 1
2

the procedure of the construction of the Hamiltonian is more complicated than for 1
2 case,

because it pertains to the two-chain uniaxial generalization of the Takhtadjan–Babujian model
(see [10, 11]). For the simplest case of the isotropic exchange interaction between the spins
and between the chains the Hamiltonian has the form [50]

H =
∑
j

(
θ2(HS+,S+,j1,j1+1 + HS−,S−,j2,j2+1) + 2(HS+,S−,j1,j2 + HS+,S−,j1,j2+1)

+{(HS+,S+,j1,j1+1 + HS−,S−,j2,j2+1), (HS+,S−,j1,j2 + HS+,S−,j1,j2+1)}
+2iθ

[
(HS+,S+,j1,j1+1 + HS−,S−,j2,j2+1), (HS+,S−,j1,j2 + HS+,S−,j1,j2+1)

])
(54)
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where {., .} denotes the anticommutator

HS1,S2,n,n+1 =
S1+S2∑

j=|S1−S2|+1

j∑
k=|S1−S2|+1

k

k2 + θ2

S1+S2∏
l=|S1−S2|

x − xl

xj − xl
(55)

where x = �S1,n �S2,n+1, and 2xj = j (j+1)−S1(S1+1)−S2(S2+1) [50]. The Bethe ansatz studies
of this model are performed in complete analogy with the above-mentioned case n± = 1. The
main difference is that for the SU(2)-symmetric or uniaxial higher-spin models the ground
state corresponds to the filling up of the Dirac seas for spin strings of lengths n± [10,11]. All
previously mentioned characteristic features of the case n± = 1 persist. The differences are
in the levels of the Kac–Moody algebras in the conformal limit—the conformal anomalies are
now equal to c± = 3n±/(n± + 2). Now the conformal field theory is a semidirect product of
Gaussian (c = 1) [71] and Z(n±) parafermion models [72, 73]: the operators identified from
the scaling behaviour of states consisting of Dirac sea strings only (obtained from finite-size
corrections) are found to be composite operators formed by the product of a Gaussian-type
operator and the operator in the parafermionic sector. To find nonzero contributions from
parafermions (constant shifts) one can consider the states with strings of other lengths than the
Dirac sea present [74–77]. For the scaling dimensions these shifts are 2r−r2

2n+4 , r = 1, 2, . . . .
For the two-chain ferrimagnet, due to NN and NNN interactions and spin frustration,

the ground state is a singlet (compensated phase) for H = 0, unlike the standard classical
ferrimagnets in uncompensated phases (recall that in the Bethe ansatz scheme the ground
state is simply determined by filling up all the eigenstates with negative energies). Integral
equations that determine the physical vacuum of the systems are similar to equations (21)
and (22). They reveal one or several minima of the corresponding distributions of dressed
energies and densities with possible negative-energy states, i.e. one or several Dirac seas [50].
An interesting feature due to S+ �= S− is the possible onset of two Dirac seas even for θ = 0.
For different values of the spins in chains a phase transition between two different phases is
induced by increasing an external magnetic field to some critical value even in the absence
of nonzero θ . Here the existence of two Dirac seas can be related to two kinds of different
low-lying excitation. They are strings of lengths n+ and n−, respectively. In this situation the
dispersion laws may be independent (not only factorized as for the case of S+ = S−). The
(new) phase transition at Hc reveals the van Hove singularity of the empty Dirac sea for the
longer strings. The spin saturation field Hs is connected with the empty Dirac sea of strings
of the smaller length.

3.4. Multi-chain models

One can see from the structure of the Hamiltonians that for the two-chain integrable models
the parameter θ characterizes the intra-chain coupling for each chain (or NNN interaction in
a single-chain picture). A natural extension of the construction (11) is to introduce the Ľ-
operator as the product ofN×N standardL-operators of an HC rather than 2×2L-operators.
Then the whole scheme of the QISM can be applied again; i.e., the problem is exactly solvable,
too. In this case it is obvious to introduce the series of {θj }Nj=1 (for each chain) and to construct
the Hamiltonian of the exactly integrable multi-chain (N is the number of chains) spin model.
For the simplest case of all, S = 1

2 isotropic AF chains, the Hamiltonian reads [34–36, 50]

HN = A
∑
j

(( ∏
i,k

(θi − θk)

)
P̂Sj,r Sj+1,r +

∑
p<q

∏
i,k(θi − θk)

(θp − θq)
[P̂Sj,qSj+1,p , P̂Sj,qSj+1,q + P̂Sj,pSj+1,p ]
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+ · · · +

( N∑
n=1

P̂Sj,nSj,n+1 − P̂Sj,NSj,N+1 + P̂Sj,NSj+1,1

))
(56)

where A is the normalization constant (which depends on θj ) and P̂SaSb ∝ Sa ⊗ Sb + const is
the permutation operator. It is important to point out that for an N -chain system the last term
in equation (56) (P̂Sj,NSj,N+1 ) is replaced by P̂Sj,NSj+1,1 , i.e. we have toroidal boundary conditions
in the second space direction rather than periodic ones [36]. Note that in the case of N �= 2
the integrable model corresponds to the pair couplings not only between the NN spins but
also to the NNN three-spin, etc, couplings. All these terms are only essential in the quantum
mechanics, because in the classical mechanics they are total time derivatives [35] and do not
change classical equations of motion. The BAEs have the form

N∏
n=1

eL1 (um + θn − θ1) =
M∏
k=1
k �=m

e2(um − uk) (57)

where M is the total number of down spins. The previously considered situation N = 2
corresponds to the shift of the variables um → um + θ with θ2 − θ1 = −2θ . Now θn − θ1

determines the values of the intra-chain couplings in chain n.
The analysis of the low-temperature thermodynamics of the multi-chain spin system is

analogous to the situation of N = 2 studied above [36, 50]. From the structure of the BAE
in the thermodynamic limit one can see that for an N -chain model (for different θj ) there can
exist, generally speaking,N phase transitions of second order in the ground state in an external
magnetic field. These are commensurate–incommensurate phase transitions for the quantum
multi-chain spin model with different couplings between chains. The values of the critical
fields Hc1 , . . . , HcN−1 and the value of the magnetic field of the transition to the spin-saturated
(ferromagnetic) state, Hs, depend on the set of θn, i.e. on the intra-chain couplings. The low-
lying excitations in the spin-saturated (F) state are gapped, while all other phases have gapless
low-lying excitations in the integrable multi-chain spin quantum model. There are also N − 1
tricritical points at which the lines of the phase transitionsHcn join the line of the spin-saturation
(F) phase transition. Naturally, the phase that corresponds to the lowest value of the magnetic
field, say H < Hc1 for special values of θn (the condition is similar to θ < θc for N = 2), has
a scalar dressed charge in the conformal limit. Hence, in the conformal limit our multi-chain
spin model behaves as the level-one WZNW conformal field theory in this phase. In the next
phase the multi-chain quantum spin model behaves as the semidirect product of two WZNW
models, hence their dressed charges are 2 × 2 matrices, and so on, until the last gapless phase,
which pertains to the semidirect product of N WZNW models with N × N dressed charge
matrices. Note that N in this approach also denotes the number of possible Dirac seas (each
of them is connected with the same magnetic field, therefore excitations in each of them are
not independent), and, therefore, with one-half of the number of Fermi points. In the limit
N → ∞ (i.e. a quasi-two-dimensional spin system) one obtains the (two-dimensional) Fermi
surface instead of the set of one-dimensional Fermi points (the latter become distributed more
closely to each other with the growth ofN ) [50]. In this limit the differences between θn tend to
zero, and this is why the differences between θcn , Hcn and also betweenHcn andHs disappear,
too. Therefore in this limit only Hs survives. This means that for the quasi-two-dimensional
limit of such an integrable model of N coupled quantum spin chains for N → ∞ we expect
only two phases in the ground state in an external magnetic field: the ferromagnetic gapped
one and the gapless phase, which in the conformal limit corresponds to one WZNW model
(with a single scalar dressed charge) [50]. The phase transition between these two phases in
the ground state in an external magnetic field is of the second order.
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3.5. Correlated electron models

Using the applied scheme of the generalization of a standard L-operator for one integrable
quantum chain to two and more chains it is possible to construct integrable models not only for
spins, but rather for interacting particles with several internal degrees of freedom (e.g. spin).
The simplest generalization of the HC is the supersymmetric t–J model [19,20]. The exactly
solvable model of coupled supersymmetric t–J chains was introduced and solved in [78].
Here in the simplest case of two chains the Hamiltonian consists of the terms describing inter-
and intra-chain hoppings and exchange couplings, and, in addition, the topological term. The
spin part of the topological term is similar to equation (18), but there is also a spin–charge
topological term [78]. The latter occurs due to possible charge movement in the supersymmetric
t–J model, comparing with the HC. These topological terms measure not only topological spin
currents, but also charge currents, i.e. nontrivial topological distributions of the spin and charge
densities in a multi-chain correlated electron system.

An interesting proposition was made in recent works [79–81]: the authors considered
additional ‘staggering’ of the permutation operators in the construction of Ľ-operators (the
spectral parameter of the second chain had an opposite sign to the first chain).

4. Related exactly solvable models

4.1. Lattice models

The well known series of related models are the ones which consider Hamiltonians such
as H̄2 or H̃2, i.e. single chains in which either shifts of the spectral parameter or different
values of site spins were introduced. Here we can refer to [14, 82–86] for regular one-
dimensional spin lattices. Naturally, it is possible to introduce an inhomogeneous shift
of a spectral parameter and/or different value of spin for a single site of a chain (i.e. not
regularly). This was realized in [87–91] for a single impurity in quantum spin chains and
in [92–94] for random ensembles of disordered impurities in quantum spin chains. In recent
years there have been published many papers devoted to exact solutions for one-dimensional
correlated electron chains with impurities. For instance, the reader can find the introduction of
magnetic [95–99] and nonmagnetic [100–103] single impurities in one-dimensional integrable
correlated electron lattice systems (a relatively recent short review of hybridization magnetic
impurities in integrable correlated electron systems can be found, e.g., in [104]). Finite
concentration of homogeneous impurities in exactly solvable correlated electron models was
exactly studied in [105, 106], and random ensembles of disordered impurities in a correlated
electron integrable model were introduced in [107].

Another important group of lattice integrable one-dimensional models is similar to the
class of integrable models considered in this paper. For these models L-operators (and,
hence, monodromies and transfer matrices) were the same as for an HC (XXZ chain) or
supersymmetric t–J chain; however, the definition of the Hamiltonian was different: instead
of using the first logarithmic derivative of the transfer matrix as the Hamiltonian, the first
and the second [108, 109], H = (i/2)J (∂ ln τ(u)/∂u)|u=0 + A(i/2)J (∂2 ln τ(u)/∂u2)|u=0 (or
the first and the third [110] H = (i/2)J (∂ ln τ(u)/∂u)|u=0 + A(i/2)J (∂3 ln τ(u)/∂u3)|u=0)
logarithmic derivatives with different coefficients were used (recently the first and the third
logarithmic derivatives of the transfer matrix were considered as the Hamiltonian of a correlated
electron model [111]). The second logarithmic derivative of the transfer matrix of the HC has
a term similar in structure to equation (18), i.e. a three-spin pseudoscalar (though different
from our basic model [38], because it pertains to the spin chirality rather than to the spin
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Figure 7. The qualitative picture for the dressed energy of spinons εsp as a function of the rapidity
u for the model with commuting NN and NNN parts of the Hamiltonian with different coupling
parameters (A < 0 is the coefficient for the NNN part of the Hamiltonian): A = Acr (a),
A < Acr (b). In case (b) the coupling A is so strong that for all values of the field H (even
H = 0) two Fermi seas are created. Filled circles and filled squares denote Fermi points for
‘particles’ and ‘holes’ for H �= 0.

antichirality). As for the third logarithmic derivative [110], it consists of a two-spin term
describing NNN interactions and four-spin terms. The presence of NN and NNN interactions
in this group of models produces features similar to our basic model: the possibility of
the two Dirac seas for low-lying excitations, and, as a consequence, magnetic-field-induced
phase transitions between commensurate and incommensurate phases. However, there exist
important differences between our basic model and these models. For the latter the parts
of the Hamiltonian describing NN and NNN interactions commute, while for the models
considered in this paper the NN and NNN parts of the Hamiltonian do not commute. This
means, for example, that the average of the three-spin term (the spin chirality) can have
its maximal value for some finite values of the inter-chain couplings (the latter implies the
quantum phase transition governed by a coupling constant A), while for our basic model it
is possible only for the infinite coupling. The other important difference is that there is a
possibility of a spontaneous magnetic moment (without any external magnetic field) for the
models with commuting NN and NNN parts of the Hamiltonian. This can be seen from
the following considerations: Even for zero magnetic field there exists some domain of the
coupling parameterA for which there are ‘holes’ in the distribution of dressed energies of low-
lying excitations (see figure 7(b)). Naturally, this implies a spontaneous magnetization (each
‘hole’ carries a nonzero magnetic moment) [110,111,133] and the first-order phase transition
line H = 0 [111]. There is a critical value of the coupling parameter (see figure 8 [111] for
the phase diagram) at H = 0 (the second-order quantum phase transition), which divides
commensurate and incommensurate (ferrimagnetic) phases. It turns out that for both classes
of models the common feature is the presence of NN and NNN interactions (not chiral terms,
which are absent for [110, 111] models) in their Hamiltonians. This produces additional
magnetic-field-induced phase transitions between commensurate and incommensurate phases
(which seems to be the generic property for these classes of quantum models).

It is worthwhile to mention another important class of exactly integrable multi-chain
models (ladders) [112–116]. In fact all these models are just another realization of the well
known Uimin–Sutherland model [12,13]. Here N − 1 SU(N) fields (different from the usual
magnetic field) play the role of inter-chain interactions (along rungs of the ladders). This
produces the main difference between this class of models and that considered in this paper:
there is a possibility of gapped low-lying excitations in the former case even in zero magnetic
field.
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Figure 8. Qualitative depiction of the ground-state phase diagram in the magnetic field–coupling
parameter planeH–A for the model with commuting NN and NNN parts of the Hamiltonian. There
are three phases: the spin-saturated (ferromagnetic) phase, the commensurate one (for the dressed
energies, see, e.g., figure 3(a)) and the incommensurate (ferrimagnetic) one (cf figure 3(c)), with
two second-order phase transition curves and the first-order phase transition line (cf figure 7(b)).
The latter ends with the second-order phase transition point (figure 7(a)). Two second-order phase
transition lines merge at the tricritical point (see figure 3(b)).

4.2. Quantum field theory and impurity models

Two large classes of Bethe ansatz solvable models share similar structure of the BAE with the
multi-chain models considered in previous sections. These are (1 + 1) QFTs and Kondo–
Anderson impurity models. It is important to emphasize that the determinations of the
Hamiltonians (and, hence, energies) are different for lattice models and these two classes
of integrable models. However, the ‘ideology’ of the Bethe ansatz consideration remains the
same as for the multi-chain models considered in the previous sections. It turns out that for
most of the examples of these two classes one needs only single-chain counterparts H̄2 or H̃2.

For the former class, L± corresponds to the numbers of (bare) particles with positive
and negative chiralities. For example, for the chiral-invariant Gross–Neveu model [117, 118]
we have to put γ → 0 (i.e. the SU(2)-symmetric case, equivalent to the SU(2)-symmetric
Thirring model), and θ = (1 −g2)/2g, where g is the coupling constant of the chiral invariant
Gross–Neveu QFT [117]. As for the Lagrange multiplier H , it can play the role of either
an external magnetic field, or the chemical potential, or an external topological field, dual
to the topological Noether current in QFTs. Here we recall that in the QFT theorists are
interested in physical particles, which have finite masses (gaps). In the chiral-invariant Gross–
Neveu model the gap of the staggered oscillations of the two-chain model plays the role of
the physical mass of the particle (spinor) [38, 117]. As for the (gapless) oscillations of the
magnetization of the two-chain model, we point out that they are the consequences of the
lattice, and play the role of the massless fermion doublers of the lattice QFT [119]. The
results of the previous section mean that the behaviour of the chiral-invariant Gross–Neveu
model (or SU(2)-symmetric Thirring model) in an external magnetic field strongly depends
on the coupling constant θ (or equivalently on g). For θ < θc the conformal limit of the QFT
corresponds to one level-one WZNW model with the conformal dimension c = 1. However, for
θ > θc (−θc −√

θ2
c + 4 < 2g < −θc +

√
θ2

c + 4) the conformal limit of this QFT in an external
magnetic field corresponds to the semidirect product of two level-one WZNW models with the
conformal dimensions c = 1. Two kinds of conformal point for this QFT have been mentioned
already [120] in a slightly different context. They were connected with the one WZNW theory
or two WZNW theories, coupled via a current–current interaction. This is related to the right–
left symmetry of the chiral invariant Gross–Neveu QFT (see, also, [14,129,130] for the case of
the QFT for the principal chiral field, or nonlinear σ -model). Note that the conditionH > Hc
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in the QFT means that the magnetic field is larger than the mass of the physical particle (colour
spinor). In this sense, in the region of the values of a magnetic field H < Hc the results
of the QFT (see, e.g., [14, 118]) predict the zero magnetization; however, a different lattice
regularization, similar to the lattice scheme used in the previous section, predicts a nonzero
magnetization of the chiral-invariant Gross–Neveu model in this region. This is the indirect
effect of the fermion doublers. In other words, it is connected with the well known mapping
of the lattice (e.g., Thirring) model under regularization on two continuum QFTs, either both
bosonic (a free bosonic QFT and a sine–Gordon one, [121]), or both fermionic ones (a free one
and a continuum massive Thirring model). There are necessarily two such theories because of
the Nielsen–Ninomiya fermion doublers: remember that we have started from a lattice [119].

For other models of QFT the procedure of the lattice regularization [122–124] was used.
There θ plays the role of the cut-off to preserve the mass of the physical particle as finite.
For example, for the U(1)-symmetric Thirring QFT [119, 125] one can use the results of the
previous section with the limit θ → ∞ taken after the thermodynamic limit (L,L±,M → ∞
with their ratios fixed, L being the size of the box). In this case one can obviously obtain
the conformal limit of the theory with nonzero physical masses of the particles. Naturally
in the limit θ → ∞ in an external magnetic field only the phase with two Dirac seas exists.
These Dirac seas correspond to the right- and left-moving particles (with positive and negative
chiralities). Actually here our point of view coincides with that of the field theorists. Recently
it was shown in [126] that for (1+1) sine–Gordon model the lattice regularization scheme in the
‘light-cone’ [127] approach gives results similar to ours for the conformal limit of the model. It
was shown there that at the ultraviolet fixed point the conformal dimensions of the sine–Gordon
model are determined by twoU(1) charges of excitations (the usual one and the chiral charge).
The chiral charge pertains to the number of excitations transferred from one Dirac sea to the
other, similar to the results of the two-chain model (note that the above-mentioned lattice-
regularized sine–Gordon case corresponds in our notations to θ → ∞, where the integral
equations for the particles with the positive and negative chiralities are totally decoupled). We
point out here that such a behaviour is not unexpected, because the sine–Gordon QFT belongs
to the same class of models as considered in this paper, i.e. its Bethe ansatz description features
a shift of rapidities in the BAE in the lattice-regularized theory [126].

Similar new phases with one or two kinds of Dirac sea for similar kinds of low-lying
excitation also exist for a number of models in which n± �= 1, for example for SU(n + 1)
chiral-invariant Gross–Neveu QFT [128]: There n+ = n− = n �= 1; for the principal chiral
field models (nonlinear σ -models) for CP-symmetric [14, 129] (there n+ = n− → ∞) and
CP-asymmetric cases [130] (there n+ �= n−, (n+ + n−) → ∞, (n+ − n−) fixed, i.e. the
symmetry SU(2) × SU(2) ∝ O(4)); and for the O(3)-symmetric nonlinear σ -model [131].
The well known fusion scheme was used for the case of a flavour-degenerate situation of the
chiral invariant Gross–Neveu QFT, in the absence of flavour fields [132]. Note that, except
for the O(3)-symmetric case, γ = 0 everywhere in the above-mentioned models of QFT.
This corresponds to rational (XXX-like) solutions of the YBE for the two-particle scattering
matrices. The total momentum and the energy of the system in the framework of the lattice
(local) regularization scheme for some QFT can be written as [119]

−2atE =
∑
±

M∑
α=1

∂

∂λα
L± ln en±(λα ± θ/2)

iaP =
∑
±

M∑
α=1

L± ln en±(λα ± θ/2)

(58)

where a and at denote the space and time lattice constants, respectively, and their ratio fixes the
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velocity of light (‘light-cone’ approach). The CP-symmetric (chiral invariant) case pertains
to the situation in which n+ = n− = n. The Dirac seas are related to dressed particles with
negative energies (strings of length n±). The behaviour of the dispersion law for an excited
particle in the CP-symmetric case (n+ = n− = n and L+ = L−) is similar to equation (51):
for instance, for the chiral-invariant Gross–Neveu QFT and principal chiral field model the rhs
of equation (51) must be simply multiplied by sin(πr/n + 1)/ sin(π/n + 1) and the parameter
θ in equation (51) has to be replaced by (n + 1)θ/2. r = 1, . . . , n is the rank of a fundamental
representation of the SU(n + 1) algebra. Note that the limit (n+ + n−) → ∞ is the case of
the CP-asymmetric case of the QFT for the principal chiral field, i.e. with the Wess–Zumino
term (n+ �= n−) [130]. For the CP-symmetric case one or two Dirac seas of the same type of
excitation exist due to nonzero θ , but in the CP-asymmetric case the existence of two Dirac
seas can be related to two kinds of different low-lying excitation (particles). They are strings
of lengths n+ and n−, respectively. In this situation the dispersion laws may be independent
(not only factorized as for CP-symmetric cases).

We should like to mention a recent exact study of the (1 + 1)-dimensional WZNW model
with a nonzero Wess–Zumino term, whose BAEs share similar features with ours—there is an
additional Fermi point (and, hence, a minimum in the dispersion law, which is also connected
with NNN interactions [133]). This model has a spontaneous ferrimagnetic moment similar
to [108–111].

Another very important class of models, which shares the structure of the BAE with two-
chain models (and the structure of Hamiltonians with QFT models), is the class of models of
magnetic (Kondo) and Anderson (hybridization) impurities [134–136]. Here the shifts of the
spectral parameter (or different value of the spin) are present only at one (impurity) site.

5. Imaginary θ

In previous sections we considered two- and multi-chain Bethe ansatz integrable systems
with real shifts of spectral parameters in transfer matrices. For real θ (and for positive J )
the first two terms in the Hamiltonian equation (13) or (14) correspond to the AF NN and
NNN interactions, thus to the spin-frustrated case. On the other hand, imaginary values of
θ pertain to the non-Hermitian Hamiltonian (three-spin term) and either AF or F NN and
NNN interactions. Note that while the Hamiltonian is non-Hermitian for an imaginary θ ,
the Bethe eigenvalues are real. The overall factor 1/(1 − |θ |2) is present in the Hamiltonian
for an imaginary θ . This implies the critical points |θ | = ±1. At these points the NN and
NNN couplings between spins change their signs: for |θ | < 1 the NN coupling is of AF type,
while the NNN coupling is of F type, and vice versa for |θ | > 1. It is interesting to note
that for a negative NN coupling and positive NNN one the system also formally becomes spin
frustrated, while in the opposite case it does not. The presence of these points can be also
seen from equations (16), where the first multiplier in the nominator (denominator) of the lhs
is totally cancelled by the second multiplier of the denominator (nominator). At these points
the effective length of the chain becomes half the size, and the effective site spin becomes
Seff = 1 in equations (16). The energy and the BAE for these points coincide with those for
the Takhtajian–Babujian S = 1 single chain [10, 11]. Hence at these points local spin triplets
are formed from original spins 1

2 . In principle for an arbitrary value of an imaginary θ the
model behaves as a mixed chain of effective ‘fractional spins’ (1 ± |θ |)/2. We can divide
|θ | = [|θ |] + {|θ |}, where the first term ([|θ |]) denotes the integer part and the second one
denotes the fractional part. In this case the ground state pertains to the filling up of two Dirac
seas for the strings (bound states) of lengths 1 ± [|θ |]. All other exctations have only positive
energies. The Bethe ansatz study in this case is similar to the situation with different spins
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for two chains [50] (or a single chain consisting of different spins [85, 86]). The fractional
part {|θ |} determines the renormalization of the effective velocity of low-lying excitations
v → v cos(π{|θ |}/2) (cf the renormalization of the Kondo scale, which plays the role of a
local Fermi velocity for an integrable chain with a ferromagnetic impurity [137]). Now let us
consider a nontrivial situation with non-F ground state. The ground-state phase transition to
the spin-saturated (F) state is determined by the van Hove singularity of the Dirac sea of the
strings of smaller length, while other phase transitions are between the phases with gapless
low-lying excitations (commensurate–incomensurate phase transitions).

It turns out that the case of an imaginary θ in the QFT limit corresponds to two coupled
WZNW models of the levels 1 ± [|θ |] with the nonzero Wess–Zumino term (the coefficient is
equal to |θ |). (It is interesting to note that the case with real θ can be formally considered as
the situation with imaginary coefficient in front of the Wess–Zumino term.) The conformal
anomalies are equal to c± = 3(1±[|θ |])/(3±[|θ |]). Now each conformal field theory becomes
a semidirect product of a Gaussian (c = 1) [71] and Z(1 ± [|θ |]) parafermion models [72,73]:
The operators identified from the scaling behaviour of states consisting of only Dirac sea
strings (obtained from finite-size corrections) are found to be composite operators formed by
the product of a Gaussian-type operator and the operator in the parafermionic sector. To find
nonzero contributions from parafermions (constant shifts) one can consider the states with
strings of other lengths than the Dirac sea present [74, 75]. For the scaling dimensions these
shifts are 2r−r2

6±2[|θ |] , r = 1, 2, . . . .

6. Beyond the Bethe ansatz integrability

So far we have only considered integrable multi-chain quantum models. We have shown that
commensurate–incommensurate phase transitions of the second order reveal themselves in an
external magnetic field due to intra- and inter-chain interactions (or NN and NNN interactions
in a single-quantum-chain picture). The onset of these phase transitions does not depend
on the value of the site spins. (They emerge in the presence of the ‘easy-plane’ magnetic
anisotropy, which keeps the system in the critical gapless region.) It is important to note that
due to frustrations of interactions between neighbouring spins and the presence of additional
terms in Hamiltonians (which violate time-reversal and parity symmetries—spin chiralities or
topological currents), for all models considered in the paper one cannot satisfy the conditions of
the Lieb–Schultz–Mattis theorem [138] (our models have frustrated but not bipartite lattices).
Hence the latter cannot be applied (at least directly) for this class of models. This is why for
all considered models there are no spin gaps (except of the trivial one, for the spin-polarized,
ferromagnetic, ground state). (We do not consider here the gaps connected with an ‘easy-
axis’ magnetic anisotropy, but rather Haldane-like spin gaps [139] which appear even for
the isotropic spin–spin interaction, or gaps of fractional magnetization plateaux [140], see
also [141].) It is not clear, however, which features of the behaviour of these integrable
models (sometimes referred to as ‘fine-tuned’ parameters) have to exist for more realistic
multi-chain models, and what are the qualitative differences we expect to exist between the
integrable multi-chain models and other multi-chain systems. It turns out that one can study
the behaviour of the Hamiltonians (13) or (14) with the help of a phenomenological classical
approach. Here one replaces quantum spins by classical ones, i.e. the value of each site spin
is large, S → ∞. It is easy to observe that the three-spin term (18) does not change classical
configurations with minimal energies [51], which are the Néel (ordered) state of a single AF
chain of length 2L for J2 � J1 (i.e. θ � 1; here the NN AF interactions are dominant),
the incommensurate spiral phase in the same AF chain with the order parameter (the step of
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the spiral) cosφ = −J1/4J2 ≡ −1/2θ2, for J1 � 4J2 (2θ2 � 1), and the Néel ordered
state of two AF chains of lengths L for J2 � J1 (i.e. θ � 1; here the NNN AF interactions
are dominant) [38]. It turns out that such a classical approach does not take into account the
quantum nature of the system and produce magnetic ordering—the feature not seen in the
exact solution. Hence this phenomenological approach cannot be used for a description of
more realistic systems. As we argued above [35], the presence of chiral (topological) terms in
the Hamiltonian (which are the total time derivatives and do not change classical equations of
motion but rather affect topological properties, like the choice of the θ -vacuum in Haldane’s
approach) is the reason why the low-lying excitations (and fermiom doublers for lattice QFTs)
for this class of models are gapless and associated low-energy theories are conformal. Relevant
perturbations to this class of integrable models will produce gaps for low-lying excitations.
As usual, the algebraic (power-law) decay of correlation functions in the ground state of the
models, considered in this paper, determines the quantum criticality. This means that, starting
from the (conformal) exact solutions, one can argue that the response of more realistic multi-
chain systems to perturbations can be evaluated by using perturbative methods, e.g., in a scaling
framework. For example, let us study the effect of relevant perturbations to the considered
Hamiltonians, Hr = H + δH1, where one can choose, for example, the standard Heisenberg
model for several coupled quantum spin chains as Ĥr and the Hamiltonians of spin chains
considered above for the values of θ (in the domain where the three-spin terms are relevant) as
H. The correction to the ground-state energy and the excitation gapm (the mass of the particle
in the QFT) for the quantum critical system are

=E ∝ −δ(d+z)/y

m ∝ δ1/y (59)

respectively, where d is the dimension of the system, and z is the dynamical critical exponent.
For the conformally invariant systems studied here one has d = z = 1. The application of the
standard (hyper-) scaling relations yields y+x = 2(= z+d), where x is the scaling dimension,
i.e. x = 2=l + 2=r, found in section 2 (for the phases with the dressed charge matrices the
summation over upper indices is meant). Hence the gap for the low-lying excitations (the mass
of the physical particles in the QFT) for perturbed systems will be

m ∝ δ1/2(1−=l−=r). (60)

Note that because of scaling, the behaviour of critical exponents (which are related to the
exponents, which we introduced for the integrable multi-chain spin models) in the vicinities of
the lines of phase transitions has to be universal. For example, we expect that the spin gap has
to exist for the values of the isotropic zigzag inter-chain coupling higher than or of the order
of 0.5 (θ2 > 1) for the two-chain spin- 1

2 system, where the three-spin couplings are relevant
(and the emergence of the spin gap is known exactly [142]).

7. Conclusions

In this article we have reviewed the recent development of the one-dimensional Bethe ansatz
solvable multi-chain quantum models. The algebraic version of the Bethe ansatz (the QISM)
permitted us to construct new families of integrable Hamiltonians using simple generalizations
of the well known constructions of a single-chain one-dimensional quantum model. Our ‘basic’
model of this class of models (the AF two-chain spin- 1

2 model with the NN and NNN spin-
frustrating interactions) already has revealed the most important properties, which were absent
for a single-chain situation. We have shown how the algebra of the QISM works for this model,
and what were the most important features of the Hamiltonian (which revealed the topological
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properties of the two-dimensional together with the one-dimensional properties). We have
considered the solution of the Bethe ansatz for the ground state, low-lying excitations and
conformal limit (with the asymptotic behaviour of correlation functions). The phase diagram
for the model in the ground state as a function of coupling constant and an external magnetic
field has been analysed. We have shown how the spin-frustrating interactions produced the
(quantum) phase transitions between commensurate and incommensurate phases (both with
gapless excitations), which were absent for single-chain models. We have constructed the
thermal Bethe ansatz of this model in the form of the ‘QTM’. Then we have considered
possible generalizations of our basic model: an inclusion of a magnetic anisotropy, higher-spin
representations (including very important case of a one-dimensional quantum ferrimagnet),
the multi-chain case (here we have studied the important limiting case of an infinite number
of coupled chains, hence a possible scenario of the transition from one to two dimensions
in the framework of the Bethe ansatz integrability), internal degrees of freedom of particles
at each site (i.e. multi-chain models of strongly correlated electron systems), etc. We have
reviewed other groups of multi-chain exactly solvable models (e.g. spin ladders) and explained
the similarities and differences between the latter and the considered class of models. We have
discussed the common features of the structure of the Bethe ansatz of this class of models and,
at first sight, very different integrable models of the quantum field theory and magnetic (Kondo-
like) impurities in the electron host. The problem of imaginary values of shifts of a spectral
parameter (which pertained to non-Hermitian Hamiltonians) has been solved, too. Finally,
we have shown how one can understand the behaviour of non-integrable (less constrained)
multi-chain quantum models using exact results obtained for this class of models.
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[37] Frahm H and Rödenbeck C 1996 Europhys. Lett. 33 47
[38] Zvyagin A A 1998 Phys. Rev. B 57 1035
[39] Wen X G, Wilczek F and Zee A 1989 Phys. Rev. B 39 11413
[40] Haldane F D M and Arovas D P 1995 Phys. Rev. B 52 4223
[41] Perelomov A M 1981 Sov. Phys.–Usp. 24 645
[42] Rajaraman R 1982 Solitons and Instantons: an Introduction to Solitons and Instantons in Quantum Field

Theory (Amsterdam: Elsevier)
[43] Belavin A A and Polyakov A M JETP Lett. 22 245
[44] Wilczek F 1990 Fractional Statistics and Anyon Superconductivity (Singapore: World Scientific)
[45] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[46] Abanov A B and Wiegmann P B 1998 Phys. Rev. Lett. 78 4103

Abanov A B and Wiegmann P B 2000 Nucl. Phys. B 570 685
[47] Wiegmann P B 1999 Phys. Rev. B 59 15705
[48] Vigman P B 1985 JETP Lett. 41 95
[49] Park S and Lee K 1998 J. Phys. A: Math. Gen. 31 6569
[50] Zvyagin A A 2000 Low Temp. Phys. 26 134
[51] Zvyagin A A 1996 JETP Lett. 63 204
[52] Andrei N and Lowenstein J H 1979 Phys. Rev. Lett. 43 1698
[53] Faddeev L D and Takhtadjian L A 1982 Phys. Lett. A 85 375
[54] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333
[55] Cardy J L 1986 Nucl. Phys. B 270 186
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[111] Zvyagin A A, Klümper A and Zittartz J 2001 Eur. J. Phys. B 19 25
[112] Albeverio S and Fei S-M 1998 Europhys. Lett. 41 665
[113] Albeverio S, Fei S-M and Wang Y 1999 Europhys. Lett. 47 364
[114] Wang Y 1999 Phys. Rev. B 60 9236
[115] Batchelor M T and Maslen M 1999 J. Phys. A: Math. Gen. 32 L377
[116] Links J and Foerster A 2000 Phys. Rev. B 62 65
[117] Andrei N and Lowenstein J H 1979 Phys. Rev. Lett. 43 1698
[118] Japaridze G I and Nersesyan A A 1981 Phys. Lett. A 85 23
[119] Destri C and Segalini T 1995 Nucl. Phys. B 455 759
[120] Destri C and de Vega H J 1988 Phys. Lett. B 201 245
[121] Luther A and Emery V J 1974 Phys. Rev. Lett. 33 589
[122] Tarasov V O, Takhtadjian L A and Faddeev L D 1983 Theor. Math. Phys. 57 1059
[123] Bogolybov N M and Izergin A G 1984 Theor. Math. Phys. 59 441
[124] Destri C and de Vega H J 1989 J. Phys. A: Math. Gen. 22 1329
[125] Japaridze G I, Nersesyan A A and Wiegmann P B 1984 Nucl. Phys. B 230 511
[126] Destri C and de Vega H J 1997 Nucl. Phys. B 504 621
[127] Destri C and de Vega H J 1987 Nucl. Phys. B 290 363
[128] Andrei N and Lowenstein J H 1980 Phys. Lett. B 90 106
[129] Polyakov A M and Wiegmann P B 1983 Phys. Lett. B 131 121
[130] Polyakov A M and Wiegmann P B 1984 Phys. Lett. B 141 223



Bethe ansatz solvable multi-chain quantum systems R53

[131] Wiegmann P B 1984 Phys. Lett. B 141 217
Wiegmann P B 1985 Phys. Lett. B 152 209

[132] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5 393
[133] Tsvelik A M 2001 Preprint cond-mat/0011268
[134] Andrei N, Furuya K and Lowenstein J H 1983 Rev. Mod. Phys. 55 331
[135] Tsvelick A M and Wiegmann P B 1983 Adv. Phys. 32 453
[136] Schlottmann P 1989 Phys. Rep. 181 1
[137] Zvyagin A A and Johannesson H 1998 Phys. Rev. Lett. 81 2751
[138] Lieb E, Schultz T and Mattis D 1961 Ann. Phys., NY 16 407
[139] Haldane F D M 1983 Phys. Lett. A 93 464
[140] Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984
[141] Fledderjohann A, Gerhardt C, Karbach M, Mütter K-H and Wiessner R 1999 Phys. Rev. B 59 991
[142] Majumdar C K and Ghosh D K 1969 J. Math. Phys. 10 1388


